
Procedurally generating planetary

objects

Exploring the feasibility of isosurface extraction approaches

Kieran Sockalingam

2017

Abstract

This project explores the real-time procedural generation of asteroids and planets, with specific focus on the

applicability of polygonization methods for implicit isosurfaces to this task. This report details the design and

implementation of a system which is capable of drawing and shading arbitrarily large meshes which represent

the isosurfaces of completely generalisable scalar fields, increasing and decreasing detail on parts of the mesh

dynamically without introducing visual artefacts or rendering problems.

Contents

1 Introduction 3

1.1 Applications . 3

1.2 Learning goals . 3

1.3 Areas of interest . 4

1.4 Overview . 5

2 Literature 7

2.1 Quadtree heightmap methods . 7

2.2 Implicit methods . 7

2.3 Isosurface extraction methods . 8

2.4 Marching Cubes . 8

2.5 Dual Contouring (of Hermite Data) . 10

3 Design 13

3.1 Scalar fields . 13

3.2 Noise . 14

3.3 Lighting . 14

3.4 Shadows . 16

3.5 Background . 17

3.6 Surface features . 19

4 Implementation - Asteroids 22

4.1 Evaluation of the scalar field . 22

4.2 Dual Contouring . 24

4.3 Building the Leaves / Building the Octree . 24

4.4 Contouring the Octree . 25

4.5 Transferring data to GPU . 26

4.6 Mesh Shading . 26

4.7 Shadows . 27

4.8 Background . 28

5 Implementation - Planets 29

5.1 LOD chunks . 29

5.2 Seams . 29

6 Performance Results 35

7 Discussion 38

7.1 Areas of interest . 38

7.2 Improvements - fixing problems . 38

7.3 Improvements - suggested future work . 39

7.4 Conclusion . 39

References 40

1

List of Figures

1 Sample space scene . 3

2 Believable vs non believable realism . 5

3 Heightmaps cannot represent cliffs, caves, overhangs etc. 7

4 Marching Cubes case table [this version is a remake of the original and was released online

under GPL] . 9

5 Marching Cubes hole issue [Chernyaev 1995] . 10

6 Dual Contouring example [T. Ju et al. 2002] . 11

7 f(x,y,z) = y - k . 13

8 f(x,y,z) = length(x,y,z) - k . 14

9 Rough sphere . 14

10 Asteroid shape diversity . 15

11 Planet . 15

12 Procedural backgrounds . 17

13 Procedural backgrounds . 18

14 Surface feature: crater . 20

15 Surface feature: polar ice caps . 21

16 The architecture of the system that generates asteroids . 22

17 Neighbouring meshes leave a gap . 30

18 Neighbouring meshes stitched with seam . 30

19 Seam for two meshes of different level of detail . 31

20 Huge meshes can be made of patches . 33

21 Seams working between patches of several different LODs 34

22 Performance table . 35

23 Reference performance . 36

24 Naive performance . 37

25 Search performance . 37

2

1 Introduction

This project explores one method to procedurally generate astronomical “space scenes” and

render them at real-time framerates. The result is a software system that can generate an

interactive, navigable 3D scene, composed of a background and several foreground asteroid and

planet objects, such as Figure 1. Each element of the scene is defined procedurally, meaning

that it is generated algorithmically at runtime, rather than using stored textures, meshes, or

other data.

Figure 1: Sample space scene

1.1 Applications

The real world applications of rendering space scenes include creating content for film and

television media, video games, simulations or visualisations. The focus of this work is on real-

time procedural generation, and so it is relevant to situations where real-time framerates are

required, such as video games or interactive visualisations – whereas film and pre-recorded

television media can utilise much slower “offline” rendering techniques. The procedural content

generation is configured to generate fictional asteroids and planets, but the same principles

could be used to model real-life bodies for scientific visualisation.

1.2 Learning goals

On a personal level, I embarked on this project with the aim of learning modern shader-based

OpenGL, and about GPU hardware, GPGPU and procedural generation. This is reflected in

my decisions to use technologies, languages and techniques which are more complex, powerful,

and offer more control, at the expense of ease of development, feasibility in a finished product,

or performance, due to the increased learning opportunity.

3

1.3 Areas of interest

Bearing in mind the aforementioned learning goals, the main technical challenges which must

be overcome, and the real world requirements for such a system to be useful, there are three

key areas of interest with associated goals. They pertain to level of detail scaling, aesthetics,

and simplicity, as outlined below.

Level of detail scaling The first area of interest is concerned with level of detail scaling. It is

relatively straightforward to create a system that can render astronomical bodies such as

asteroids and planets from afar, with the camera viewing from space, or to create one that

can procedurally generate flat terrain for surface exploration, due to the constraints that

these scenarios introduce. When the camera is very far from a body, small surface features

do not need to be modelled, and when the camera is restricted to the surface, the entire

visible terrain can be approximated as a flat plane. It is much more difficult, however,

to maintain visual quality as the camera moves seamlessly from space to the surface or

vice versa, because the memory necessary to load the entire surface at the level of detail

required for surface viewing is infeasible. This project presents a solution to this issue, by

dynamically increasing the level of detail on the relevant part of the surface as the camera

moves closer, aiming to maintain real-time frame rates (24+ frames per second).

Aesthetics Regarding aesthetics – the look and appearance of the resulting scene – the target

was visual appeal rather than physical realism. The aim was not to generate models

of realistically sized planets or asteroids, or to compute physically accurate lighting and

colours. This is because the area of interest here is in procedural generation, rendering

and the associated technical challenges rather than the physical rules governing real life

astronomical objects. Instead, the goal is visual appeal - that the images look attractive

- and visual or believable realism which is that the image is realistic enough that the

viewer believes that the image could be real. [Chalmers and Ferko 2008] “Limit Theory”

[Parnell 2012] or “Kerbal Space Program” [Squad 2015] are examples of believable realism,

whereas “No Man’s Sky” [Hello Games 2016] or “Universim” [Crytivo Games 2017] exhibit

cartoon-like or scale distorted looks. In particular, in order to look convincing, the surface

needs to accurately convey the appearance of the appropriate material – e.g. rock – and a

convincing shape. My previous work in this area, and indeed similar commercial software

(such as Kerbal Space Program) suffers from a lack of variety of shape, with all objects

being only roughly distorted spheres. Further chapters explain how the use of a more

complicated approach to mesh creation, based on isosurfaces (a surface containing all the

points at which a scalar field has some fixed value), allows incredible diversity and flexibility

of the mesh shape. Furthermore, the implementation chapter demonstrates how shadow-

mapping techniques can be used to enhance the appearance of the shape and highlight the

interesting topologies that can be realised.

Simplicity (of procedural content definitions) Finally, procedural generation allows for

complete customisation of the resulting images, so it is desirable for the system to be

extremely flexible, with changes to the style, scope and effect of resulting images requiring

4

(a) Limit Theory (believable realism) (b) Kerbal Space Program (believable realism)

(c) Universim (not believable realism) (d) No Man’s Sky (not believable realism)

Figure 2: Believable vs non believable realism

only a small adjustment to the code. A successful implementation would allow for a strong

separation of concerns between code that defines the shape, colour, and other properties of

the final scene, with the code responsible for generating the scene itself and managing the

graphics hardware. Ideally, the code describing the procedural content will be extremely

expressive, minimalistic and elegant, greatly increasing the usefulness of the system as

it can be applied to new use cases easily. As the implementation chapter explains, the

difficulty in implementing a system to meet these requirements lies in the need to make use

of both the CPU and the GPU in order to achieve the desired performance. CPU and GPU

code are very different and are written in different languages so a näıve implementation

requires describing the same procedural content twice, which must be avoided to achieve

the goal of simplicity. This issue was overcome by making use of GPGPU techniques. The

system that has been created allows for procedural content to be defined in an easy to use,

elegant language, loaded and compiled at run time, while the renderer is implemented in

performant (statically-compiled) C++.

1.4 Overview

The remainder of this document consists of chapters covering literature, design, implementation,

results, and discussion, structured as follows.

One of the current state-of-the-art projects relating to planetary/asteroid rendering is a

promising but unreleased project called “Limit Theory” [Parnell 2012], which is a closed-source

video game. In a technical blog post, the author mentions that his asteroids are created using

an isosurface extraction algorithm called SurfaceNets [Gibson 1998]. This inspired a focused

5

look at isosurfaces, and eventually the decision to use them to implement this system. Despite

some limitations regarding performance, isosurfaces have a natural fit with the above goals.

Isosurfaces could be used to improve upon many of the existing, commercial video games by

allowing for much more diversity in the topology that can be represented, such as surface

features like cliffs, caves, and overhangs. More detail about this decision process is provided in

the literature chapter, first broadly describing different approaches to planetary generation and

rendering, and then comparing different isosurface extraction techniques.

The description of the process of designing and implementing the planet renderer system

occupies the bulk of this document. The implementation is capable of taking an arbitrary

definition of an isosurface (i.e. a scalar field – more on this in section 2.3), generating a mesh

which represents the surface using an isosurface extraction algorithm called Dual Contouring

[T. Ju et al. 2002] and then accurately shading it, exposing position and normal information

to customisable fragment shaders, including support for dynamically increasing detail to allow

for rendering huge meshes. Asteroids are rendered with an accurate self-shadowing system,

enhancing their interesting topology. The system is very flexible and can accept any kind of

shape, without limits on topology. The details of how the system fits together, including how

Dual Contouring is employed to create the meshes, and how accurate lighting can be calculated

from the same mathematical definition of the surface that defines its shape, is explained in the

design chapter.

The implementation of the system shall be detailed in two distinct stages. The first stage

focuses on rendering asteroids, and it will explain the method used to generate a mesh and

shade it with appropriate detail, including self-shadowing techniques to enhance topology. This

approach will allow the explanation of the system, addressing the aesthetic and simplicity goals,

while first overlooking the increased complexity that comes with level of detail scaling. The

latter stage focuses on rendering planets, and explains how the approach can be extended to

apply to significantly larger bodies, addressing level of detail scaling.

The successes and shortcomings of the project, with reference to the goals set forth above,

shall be elaborated upon in the results and discussion chapters, which will also discuss op-

portunities for future development that have arisen throughout the project, and provide some

quantitative and qualitative analysis of the results.

6

2 Literature

Any method to procedurally generate a planetary surface must produce the same end result:

geometry, in the form of a set of triangles, and a shader program to define the colour of fragments

as they appear on the screen, because this is the input format that the GPU requires to perform

the rendering process. Traditionally, the intention behind this data structure is that the mesh

will be present in the geometry of the scene, and then the shader program will be used to

perform lighting calculations.

2.1 Quadtree heightmap methods

The most popular approach that is used to draw an asteroid or planet is to create geometry

by extruding points on the surface of a sphere along the normal. It is useful to start with a

sphere because the topology is simple and thus it is easy to provide the indices that connect

the vertices into triangles. The downside is that the topology of the resulting mesh is limited

– it can only represent rough spheres. It is not possible for a heightmap approach to represent

more complex shapes, such as vertical cliffs or caves, because the surface is limited to just one

height at each location, as shown in Figure 3.

Figure 3: Heightmaps cannot represent cliffs, caves, overhangs etc.

The most common way to implement LOD scaling with this approach is to generate the

mesh in a cube shape first, as the cube is easily subdivided into patches that can be tessellated

at different levels of detail. Typically, each of the six faces is constructed from patches which

are organized in a quadtree, so patches can be subdivided for more detail or merged together

to reduce detail. Before drawing, the points are normalized, forming a sphere, and extruded

according to a heightmap.

2.2 Implicit methods

In recent years, the performance of graphics cards has increased exponentially, and it is slowly

becoming more feasible to skip mesh creation entirely, and instead to draw two triangles which

cover the screen and use the fragment shader to perform all the calculations necessary to draw

something.

7

If a shape is defined implicitly, such as by an isosurface, then raytracing or raymarching

can be used in the fragment shader to draw the shape. For a particular scalar field function

f(x, y, z), an isosurface with isovalue k is defined as the surface containing all points at which

f(x, y, z) = k.

The advantage of these methods is that they do not have to approximate a shape with a

polygonized mesh, allowing for pixel perfect smooth curves or complex topology. Furthermore,

the definition of a shape through an implicit function is extremely flexible and general. The

main disadvantage is that these methods are very computationally intensive. The fragment

shader is executed for every pixel on every frame, storing nothing between frames, meaning

that the shape is recomputed on each frame, whereas it would only have been computed once

using a mesh. The GPU hardware is also highly optimised for rendering a mesh.

2.3 Isosurface extraction methods

In this section, approaches for creating traditional meshes based on isosurfaces will be explored.

These methods combine the advantages of defining the shape of the mesh with an implicit

function with the advantage of the speed of rendering a polygonised mesh.

An isosurface extraction algorithm is a method for constructing a mesh of polygons to ap-

proximate an isosurface. Generally speaking, the isosurface at which f(x, y, z) = 0 is generated,

so a simple transformation can be used to generate an isosurface with a different isovalue.

In theory, a scalar field would usually be continuous and defined at every point in a given

interval. For practical purposes, the data must be sampled at discrete points, and depending

on the kind of data that is being used, it may only be available at discrete points, e.g. medical

scan data. Different algorithms sample the data in various ways, but both the algorithms that

shall be discussed use the data as sampled on a structured, uniform grid. Thus, it is useful to

imagine the data as an array of cubes, with the values of the scalar field tagged on the cubes at

their vertices. It is common to interpolate with a trilinear function to define values for the scalar

field within the cube. The following is a comparison of two of the most popular algorithms for

extracting a polygonised mesh representing an isosurface of a given scalar field.

2.4 Marching Cubes

In many ways the original, and perhaps the most well known of all the algorithms that have been

developed to solve this problem is Marching Cubes. Introduced in 1987 by Lorensen and Cline

in SIGGRAPH [Lorensen and Cline 1987], it was the first of many similar algorithms, which

can all be considered to build upon it. Marching Cubes takes a simplistic divide and conquer

approach, breaking the problem down into a separate subproblem for each cube – neighbouring

cubes do not affect each other’s resulting geometry. Thus the algorithm is easily implemented

in a fully data-parallel manner, which is a very useful when implementing Marching Cubes for

a parallelized system such as a GPU [Smistad et al. 2011], where parallel computation units

perform the same instructions on different data in parallel very efficiently.

For each edge that exhibits a sign change on each cube, linear interpolation is used to place a

vertex at the approximate location where the field takes a zero value. These vertices are joined

8

together to form the triangles to represent the surface within the cube. Unlike the positions of

the new vertices, the way in which they are connected together only depends on the signs of

the scalar field at each corner of the cube, and not the exact value. This means there are only

28 = 256 cases, making a case-table feasible and efficient. For each cube, the value of the scalar

field at each of the eight vertices is checked to determine whether the vertex is above (outside) or

below (inside) the isosurface. Using these eight binary values as an index, the polygon topology

information is retrieved from a 256-value lookup table. The table describes which of the new

vertices should be connected together into triangles.

In the original paper, Lorensen and Cline make use of two different symmetries to reduce

the number of cases for which the triangulation must be calculated by hand. They note that

the topology is the same when the vertices which are above the surface are exchanged with

those that are below the surface, thus reducing the possible cases to 128. The number of cases

is further reduced to just 15 by considering rotational symmetries by hand.

Figure 4: Marching Cubes case table [this version is a remake of the original and was released online

under GPL]

Figure 4 is a visualisation which depicts the 15 cases. The most trivial case is the first, where

none of the vertices are underneath the surface. There is a single case when only one vertex is

included; this can easily be rotated to the relevant position. There are three cases where two

vertices are included; when they share a line, when they are diagonally opposite on a face, and

when they are opposite on the cube, and so on for cases with three and four vertices included.

For cases where more than four vertices are included, symmetry is used.

The standard 15 case table has been criticized and improved upon by several authors, because

its simplicity can cause at least two main problems. The first, and perhaps most serious, is that

there is a possibility for holes to appear in the mesh due to vertices on a shared face being

connected differently in two adjacent cells. An example of this is shown in Figure 5, where the

shared face has the new vertices connected differently in each cube.

The second problem is that the behaviour of the field within the cube is not considered when

selecting from the case table, so there are ambiguities in some of the cases. For example, in the

9

Figure 5: Marching Cubes hole issue [Chernyaev 1995]

case where two diagonally opposite vertices are below the surface (first case on the last row in

the above diagram), the two regions may or may not meet within the cube. In Marching Cubes

33 [Chernyaev 1995], this internal ambiguity is solved by treating the behaviour of the field

inside the cube as the trilinear function between the values at the vertices, and constructing a

33 case table that, with extra computations, creates a mesh which is topologically equivalent

to the trilinear function.

The case table can also be extended in other ways, to solve other issues: Raman and Wenger

index a table using three possible labels for each vertex, differentiating the case when the vertex

has a value equal to the isovalue, resulting in 38 = 6561 entries. This allows their version of

the algorithm to avoid generating small or zero area triangles, short edges and small angles,

resulting in a cleaner, more efficient mesh [Raman and Wenger 2008].

2.5 Dual Contouring (of Hermite Data)

There have also been many improvements to the core mechanics of the Marching Cubes al-

gorithm since the 1987 paper. There is a newer class of algorithms which are so-called ‘dual’

methods, as opposed to the original ‘primal’ methods [Schaefer and Warren 2002]. Traditional

primal algorithms generate one or more polygons inside each cube that intersects the surface,

with the vertices lying on the edges of the cube. A dual algorithm is one which places a vertex

within each cube, not necessarily on an edge, and makes a polygon connecting the four new

vertices in cubes which share a given edge when that edge exhibits a sign change. It thus gen-

erates a mesh that is dual to the mesh generated by a primal method in the sense that vertices

and polygons are interchanged.

Dual methods have certain advantages. Firstly, the mesh polygons are more evenly sized,

because the vertices roughly correspond to a regular grid, whereas Marching Cubes can produce

both large and small polygons. Secondly, the resulting mesh better represents the intended

isosurface because there is more freedom in the placement of vertices, which can be exploited

by carefully picking the best location inside the cube. Primal methods also tend to create

visible grid-like structures in the resulting mesh due to the constraint that vertices must be on

the edges of the grid.

One of the earliest of the dual methods is SurfaceNets [Gibson 1998], which places the vertex

within each cube at the centroid of the intersection points on the edges that would have been

generated by Marching Cubes.

10

Dual Contouring, the algorithm introduced in Dual Contouring of Hermite Data [T. Ju et al.

2002], makes changes to the way the scalar field data is represented. Instead of a flat grid, the

method uses an octree structure (a tree structure where each node represents a cubic space and

has eight children to represent the eight smaller cubes that fit into it with half the side length).

The algorithm requires that the scalar field it operates upon is “hermite data”, which means

that the normal at a given point is also available. This can be provided analytically, or by simply

calculating a numerical approximation to the normal by evaluating the scalar field at multiple

points with a small offset. The normal data is used to preserve sharp features such as edges and

corners in the resulting mesh. This is done using a technique whereby the vertex is placed in

the location that minimizes a Quadratic Error Function (QEF). The QEF is constructed based

upon not only the position of the intersection points, but also the normal of the scalar field at

those points. This extra information means that features within the cube are preserved much

better than by Marching Cubes, resulting in the distinctive sharp edges which are smoothed-out

by Marching Cubes.

Each intersection point and its respective normal define a tangent plane to the isosurface.

The QEF is the sum of the distances to each of the planes squared, represented equivalently as

a function of the intersection points and the normal as:

E[x] =
∑
i

(ni · (x− pi))2

where E[x] is the QEF at a point x, and (pi, ni) are the (intersection point, normal) pairs.

Figure 6: Dual Contouring example [T. Ju et al. 2002]

Figure 6 is a 2D example, showing the scalar field data (left), with the Marching Cubes

contour (middle) and the Dual Contouring contour (right). In the upper-right cell, Dual Con-

touring captures a sharp corner feature that Marching Cubes fails to represent accurately, due

to the placement of the vertex so as to be as close as possible to the position where the extension

of the incoming tangent lines would meet.

Since its publication, Dual Contouring has also been extended, modified, and improved,

with versions of the algorithm offering various advantages, such as Manifold Dual Contouring

[Schaefer, Tao Ju, et al. 2007], which better preserves the manifold nature of the surface, or Dual

Marching Cubes [Schaefer and Warren 2004], which produces meshes of comparable quality with

far fewer polygons by representing the scalar field data on a more flexible grid that is dual to

11

the structured grids used by Marching Cubes and Dual Contouring.

To summarise, Dual Contouring is a far more complex algorithm than the original Marching

Cubes, and it reproduces the desired isosurface much more accurately. This makes it ideal for

use in applications such as visualising medical scan data, where the accuracy of the visualisation

is critical, and the processing time is less of a concern. However, the older Marching Cubes

algorithm still finds use today, due to its simplicity, ease of implementation on parallel graphics

hardware, and its fast execution time using lookup tables. For real-time applications, even

recreating the mesh from scratch every frame is much more feasible with Marching Cubes. In

applications such as computer games, where the isosurface mesh can be used to model a variety

of different objects procedurally, or metasurfaces like liquids, the accuracy of the mesh is not

critical, whereas speed of execution is paramount, so Marching Cubes would be a good choice

for a commercial product. However, in this context, the aim is partly to explore the feasibility

of the more complex algorithm. Furthermore, it is desired to create a flexible system that can

perform well with any scalar field, including those which Marching Cubes fails to accurately

represent. For these reasons, the system described in this project implements Dual Contouring.

12

3 Design

The software system developed in this project (hereafter “the system”) will draw one or more

asteroids and planets by using a scalar field and Dual Contouring to procedurally generate a

mesh, and then use the scalar field to shade the mesh appropriately for visual realism. This

section will discuss how to build up an interesting scalar field, and the mathematics necessary

to shade the mesh appropriately.

3.1 Scalar fields

The scalar field will be a function of the form f :: R3 → R, where the surface of the asteroid

will be defined as the surface for which f(x, y, z) = 0. The scalar field must be continuous

for Dual Contouring to work, but isosurface extraction algorithms typically do not distinguish

between the inside and the outside of the mesh, so whether the inside is positive or negative is

not important. By changing the function, the shape of the generated asteroid can be controlled,

and by introducing deterministic pseudorandom components, such as procedural noise, unique

asteroids can be created from each pseudorandom number generator seed value. It is useful

to think of the scalar field as being a “signed distance field”, where the value of f(x, y, z) is

the signed distance between (x, y, z) and the closest point on the mesh, because this can make

it easier to understand the link between a given shape and its relevant function, but it is not

necessary for the scalar field to have this property. For example, f(x, y, z) = y − k would be a

plane parallel to the xz plane, passing through (0, k, 0) (Figure 7). f(x, y, z) = length(x, y, z)−k
would be a sphere at the origin with radius k (Figure 8).

Figure 7: f(x,y,z) = y - k

13

Figure 8: f(x,y,z) = length(x,y,z) - k Figure 9: Rough sphere

3.2 Noise

Procedural noise fields are arguably one of the most important and popularly used building

blocks for creating procedurally generated content. A noise function deterministically assigns

a pseudorandom value to each point in a space in a continuous manner, making noise much

more useful than ordinary random numbers for creating content that mimics elements of the

natural world, such as textures. Different noise functions create values that differ in their

characteristics, and can usually be generalised to n dimensions, with 2D, 3D, and 4D frequently

used in videogames. Perlin noise [Perlin 1985] is a very popular kind of gradient noise, meaning

that the algorithm computes gradients at fixed points in a lattice structure, and interpolates

some function of the gradients to obtain noise values between the lattice points. The system

shall make use of Simplex noise [Perlin 2002], which improves over the original Perlin noise

by reducing directional artefacts and improving performance [Gustavson 2005]. By combining

Simplex noise with the scalar field function for a base shape, a “rough” version of the shape can

be created, with pseudorandom perturbations in the surface (Figure 9). A common technique

for increasing the level of detail when using noise is to create a “fractal” version, where several

layers, or octaves, of the noise are combined, each at a progressively increasing frequency. Using

this, Simplex noise can be used to create a texture that closely resembles rock. If all the octaves

used have high frequency and low amplitude, then the shape doesn’t deviate from the base

sphere too much, producing planet-like bodies (Figure 11). Low frequency octaves can be used

to create shapes that are very different from the base sphere, suitable for asteroids (Figure 10).

3.3 Lighting

The most popular method for shading a surface for realistic lighting is the Phong reflection

model [Phong 1975]. It consists of three components, which are combined to produce the final

shading: ambient, diffuse and specular reflection. For a given material, define constants:

14

Figure 10: Asteroid shape diversity

Figure 11: Planet

15

• Ks (specular reflection constant)

• Kd (diffuse reflection constant)

• Ka (ambient reflection constant)

• α (shininess)

Then, the illumination Ip at a point p is given by:

Ip = kaia +
∑

m∈lights
(kd(L̂mN̂)im,d + ks(R̂mV̂)αim,s)

where:

• lights = set of all lights

• ia = ambient intensity

• im,d = diffuse intensity for each light m

• im,s = specular intensity for each light m

• L̂m = direction from point on surface to light m

• N̂ = normal

• R̂m = reflection direction

• V̂ = direction from surface to viewer

R̂m can be computed using L̂m and N̂ :

R̂m = 2(L̂mN̂)N̂ − L̂m

So for each point on the surface that is to be shaded, L̂m, N̂ , and V̂ are required to compute

lighting. Section 4.6 shall explain how these values are exposed to the shader.

3.4 Shadows

A mesh shaded by the Phong reflectance model will be darker on faces that are not facing the

light source, but still does not look correct because faces that are facing the light source will

be lit regardless of whether or not they are in fact occluded by other parts of the geometry. In

order to accentuate the interesting topology that the Dual Contouring approach is capable of,

it is important to correctly account for occluded faces. The implementation of shadow mapping

[Williams 1978] techniques to account for self-shadowing is described in the implementation

chapter. The resulting asteroids look realistic (Figures 10, 12, 13).

16

3.5 Background

Simply drawing the asteroids onto a black background achieves a fairly realistic look, as most of

space is simply black in reality. However, it is a desirable feature of the system to have the same

level of procedural control over the background, in order to achieve different visual effects. For

example, a physically realistic look may include background stars, while a fantasy theme may

include exaggerated, colourful nebulae. Bright and interesting colours have been introduced

into the backgrounds for these screenshots in order to emphasise that the shadows hide part, or

even all of an asteroid, depending on the point of view. For example, an image like this (Figure

12) would be almost completely black.

Figure 12: Procedural backgrounds

The screenshot in Figure 13 contains a procedural background defined by the following

shader, which demonstrates some techniques that can be used to create interesting procedural

shapes and effects.

1 void main()

2 {

3 /* Interpret input uv_frag as a direction vector uv */

4 vec3 uv = normalize(uv_frag);

5 /* pxcol will contain the final pixel colour */

6 vec3 pxcol = vec3(1.0);

7 /* Perturb uv with fractal simplex noise to use as an address for other noise */

8 vec3 addr = vec3(uv.x + fractalNoise3(uv * 2.0), uv.y + fractalNoise3(uv * 2.0),

9 uv.z + fractalNoise3(uv * 2.0));

10 /* baseCol contains the desired main colour of the background */

11 vec3 baseCol = vec3(1.0, 0.5, 0.8);

17

Figure 13: Procedural backgrounds

12 /* use voronoi noise to create dark and light patches */

13 pxcol = baseCol * 1.0-voronoi(addr*2.0).x;

14

15 /* use raymarching to create a simple volumetric fog */

16 vec3 ro = uv;

17 float fog = 0.0;

18 for (float d = 1.0; d <= 100.0; d += 1.0) {

19 float sample = fractalNoise3(ro * d * 0.1);

20 fog = max(fog, sample);

21 }

22 pxcol = pxcol * (1.2-fog);

23

24 /* stars */

25 /* starCol will contain the colour of the star */

26 vec3 starCol = vec3(0.0);

27 /* create discrete coordinates so stars are larger than fragments */

28 float starfactor = 1024.0;

29 float pX = floor(uv.x * starfactor / 2.0);

30 float pY = floor(uv.y * starfactor / 2.0);

31 float pZ = floor(uv.z * starfactor / 2.0);

32

33 /* generate a pseudorandom value */

34 float salt = hash(pX);

35 float toHash = 17.0*pX + 7.2*pY + 9.3*pZ;

36 float val = hash(hash(toHash + salt));

37

38 /* colour the star differently according to the desired distribution */

39 if (val > 0.99992) {

40 starCol = vec3(1.0, 0.8, 0.8);

41 }

42 else if (val > 0.99900) {

43 starCol = vec3(0.8, 0.8, 1.0);

44 }

45 else if (val > 0.99865) {

46 starCol = vec3(1.0);

18

47 }

48

49 /* add the star into the pixel colour */

50 pxcol += starCol * max(1.5*length(pxcol), 0.0);

51

52 /* shader output */

53 color = vec4(pxcol,1.0);

54 }

Voronoi noise is used to create light and dark patches using its cell-like structure, and by

first perturbing the address used to index the voronoi noise field using fractal simplex noise, a

swirling or distorting effect is achieved. The stars are created by generating a pseudorandom,

deterministic floating point number and comparing it to various threshold values, adding a star

colour if necessary.

3.6 Surface features

It is extremely easy to add features to the surface of the planet using the scalar field definition.

For example, with very small changes to the code, craters can be added (Figure 14).

The appearance of the planet can be easily customised by making small changes in the

fragment shader. For example, it only takes a small addition to add polar ice caps (Figure 15).

19

1 dvec3 crater = radius*normalize(dvec3(1.0, 1.0, -2.0));

2 double crater_dist = abs(length(crater-p));

3 double crater_edge_dist = abs(1000.0-length(crater-p));

4 double crater_contrib = 0.0;

5 if(crater_dist < 1000.0){

6 crater_contrib = (1000.0-crater_dist)/1000.0;

7 crater_contrib = 1000.0*crater_contrib*crater_contrib;

8 }

9 crater_contrib -= 80.0*(1.0-smoothstep(0,200,crater_edge_dist));

10 return length(p) - radius + 1.0*crater_contrib - 120.0*f64_noise_func(octaves, np);

Figure 14: Surface feature: crater

20

1 float t = abs(normalize(vec3(pf_pos))).y;

2 if(t > 0.5 && snoise(vec3(pf_pos*0.01f)) > (4.0-5*t)) {

3 baseColor = vec3(0.6);

4 }

Figure 15: Surface feature: polar ice caps

21

4 Implementation - Asteroids

Figure 16: The architecture of the system that generates asteroids

4.1 Evaluation of the scalar field

Upon consideration of the requirements of the system, it quickly becomes apparent that the

implementation must make heavy use of the GPU, in order to be flexible, useful, and efficient.

The scalar field that defines the shape of an asteroid needs to be evaluated for at least two

purposes: creating the mesh using Dual Contouring, and shading the mesh according to the

lighting of the scene. In order to perform the latter process on a per-pixel basis, without

interpolation for the best quality shading, the fragment shader responsible for shading the

mesh must be able to evaluate the scalar field at given points, so the scalar field will need to be

defined in GPU code – GLSL, in this case. Thus, if defining the same scalar field multiple times

is to be avoided for simplicity, the evaluation of the scalar field for the mesh creation must also

occur on the GPU.

Dual Contouring is not fully data parallel, because edges and triangles are created between

some (but not all) voxels, so it’s not the case, unlike with Marching Cubes, that each piece of

input data is transformed into an independent piece of output data. In addition, the reference

implementation of Dual Contouring uses several mutually recursive functions, a design that

would not be suitable for GPU implementation. For these reasons, it is significantly more

feasible to implement Dual Contouring on the CPU. To this end, the CPU also needs to be able

to access values of the scalar field.

The solution to satisfy these opposing requirements is to use GPGPU techniques to evaluate

the scalar field on a structured grid of points in the region of interest on the GPU, save the

22

results into a 3D texture, transfer the texture from the GPU into the main memory, run Dual

Contouring on the CPU, and transfer the resulting mesh back onto the GPU. This is feasible

because this is a pre-process step that only needs to occur once as an asteroid is created, rather

than during real-time usage of the system, and due to the incredibly high memory bandwidth

(transfer rate) of modern GPUs. (128x128x128 voxels, 32bit float in each = 8MB of data.

PCIe 3.0 x16 transfer rate to GPU approaching 16GB/s.) This solution results in a very clean

and appealing way of defining the scalar function just once in GLSL. There are a variety of

GPGPU platforms available that could be used to compute the scalar field values, such as

OpenCL, OpenGL compute shaders, or CUDA. OpenCL integrates well with OpenGL, but

adds another dependency, OpenGL compute shaders are included in OpenGL by default (in the

later versions) but lack more advanced functionality, and CUDA is very powerful but is only

supported on Nvidia hardware. The implementation described in this project uses OpenGL

compute shaders, because GPGPU is only needed for one simple task and it was easiest to use

the features already included in OpenGL, and because the project commenced using an AMD

GPU. Furthermore, it is extremely easy to define a function once in GLSL and use it in both

types of shader – compute and fragment. There is room for improvement regarding this solution

with respect to multitasking, as shall be discussed in section 7.2.

A compute shader is a shader which will be executed in parallel by a specified number of

threads, each taking as input a unique multidimensional ID, which can be used to specify what

work should be done by a given shader invocation. The desired number of invocations, including

the range and dimensionality of the unique invocation identifiers, is specified CPU side by a

simple method call. In this case, the scalar field function must be evaluated at points at fixed

intervals in a cube of space.

In the first stage of the Dual Contouring algorithm, while building the leaves of the octree, the

value of the scalar field will be sampled at every corner of every voxel, hence the grid structure

of invocations of the compute shader. However, it will also need to sample at non-integer

coordinates, i.e. at points inside individual voxels, such as for determining the intersection point

of the isosurface along a given edge of a voxel. To this end, it is necessary to interpolate values

from the compute shader’s output texture when sampling CPU side. This implementation passes

all requests for the value of the scalar field through a sampler, which is an object responsible for

returning a useful result using the information from the compute shader. In practice, it performs

bound checking and trilinear filtering to obtain values within voxels, and directly reads from the

array for integer coordinate values. The sampler for asteroid creation also performs a translation

of the requested point by a different offset for each asteroid, so that several asteroids can share

the same compute shader result array and still look different. This system uses asteroids of

64x64x64 voxels, and generates 128x128x128 voxels worth of noise using the compute shader,

so several asteroids can easily share the same noise array. The same Dual Contouring code will

need to work for asteroids and planets, but the samplers have different functionality in each

case, so there are multiple different samplers which all implement the same interface.

23

4.2 Dual Contouring

The next step of the process is to run Dual Contouring on the scalar field data to create the

mesh. There are two main stages to the algorithm: creating the octree, and contouring to

create the mesh. The two stages are very independent of each other, with information only

passing from the first stage to the second stage in the octree. For ease of conceptualisation,

programming, debugging and optimization, the stages are implemented separately with only a

minimal interface.

4.3 Building the Leaves / Building the Octree

This stage takes as input just the region of interest, which is the total region of space in which

the mesh should be created. It returns an octree of nodes, where each node represents a voxel of

space, and its eight children each represent an octant of the same space after binary subdivision

along each dimension. The tree will have leaf nodes which represent voxels of a predefined size

and exist only where the relevant region of space contains the isosurface. The leaf node will

contain information about the point within it where the mesh vertex will be placed.

A simple way to implement this is to recursively build the octree “top-down”. Starting with

the root node, recurse to create each of the children, and when a certain depth is reached,

build the leaf nodes. This is inefficient because lots of nodes are created only to be deleted

straight away when none of the leaf nodes that descend from them contain the isosurface, but

the advantage is that as the process occurs, it automatically creates the tree structure. If each

recursive call creates a child for each octant, then clearly this method is only suitable for creating

octrees for cubic regions with a power of two side length of voxels. While this is good enough

for the asteroids system, which will always have a fixed size region of interest, it is not sufficient

for the planets system, which will become apparent in section 5.2, and which motivates a better

method.

A more advanced way is to build the tree “bottom-up”, by first creating all the leaf nodes that

contain the isosurface, then building the non-leaf nodes up from there. A näıve implementation

of this method creates all the leaves by simply iterating over each voxel in the region of interest

and constructing a leaf if the isosurface is contained in that voxel. A more optimized version

assumes that the isosurface is one continuous, connected surface in the region of interest, as

it is in this application, and speeds up the leaf building process by starting from one voxel

that contains the isosurface (which is found by näıve search) and proceeds to find the rest of

the leaves by repeatedly exploring neighbours. The two methods have different performance

characteristics, as discussed in chapter 6.

Once the leaves have been created, the rest of the tree structure must be created. This is

achieved by putting each leaf into a hashmap, indexed by its integer coordinates within the

space, as it is created. To create the layer of nodes above the leaves, a new hashmap for the

new layer is created, and for each leaf, the coordinates of the parent node are computed, and

used to create the parent node and insert it into the new hashmap, or attach the child to the

parent node if it has already been created. This process can simply be repeated until there is

a layer containing only one node, and that node is returned as the root of the new tree.

24

4.4 Contouring the Octree

The octree that has been produced contains the positions of all the vertices in the mesh, but

they still need to be connected into polygons. It is required that a polygon is created for each

leaf edge that exhibits a sign change, connecting the vertex positions for each of the four cells

which contain the edge.

Ju et al present an efficient and neat algorithm for recursively exploring the tree such that

a method, ContourProcessEdge, gets called for each edge that exhibits a sign change,

correctly handling situations involving leaf nodes that are not all the same size (this does not

occur with the asteroids system, but does occur with the planets system, and implementing a

contouring method that supports different size leaves allows for mesh simplification to be added,

a feature of dual contouring whereby the mesh can be reduced in size with minimal effect on

the isosurface quality). It works by introducing three mutually recursive methods:

ContourEdgeProc ensures that ContourProcessEdge is called on every smaller edge that

exists along the called edge,

ContourFaceProc ensures that ContourProcessEdge is called along every edge that is

contained anywhere within the face,

ContourCellProc ensures that ContourProcessEdge is called for every edge that is con-

tained anywhere within the cell.

Thus, if each of these methods meets these requirements, then calling ContourCellProc

on the root cell results in the desired effect.

ContourEdgeProc checks if all four of the cells containing the edge, which are provided as

an argument, are leaves. If they are, then the edge contains no smaller edges, so it calls

ContourProcessEdge, otherwise, the edge can be divided into at least two sub-edges,

so it recurses on each.

ContourFaceProc checks if either of the two cells containing the face, which are provided

as an argument, are non-leaves. If so, then the face contains four subfaces, so it calls

ContourFaceProc on those, and four extra edges between those faces, so it calls Con-

tourEdgeProc on those. If both the cells are leaves, then the face does not contain

sub-faces, so it does nothing.

ContourCellProc works similarly: if the cell is not a leaf, call ContourCellProc on the

eight children, ContourFaceProc on the 12 faces between the children, and Con-

tourEdgeProc on the six edges between the children. If it is a leaf, do nothing.

Thus ContourProcessEdge gets called on every edge exactly once, with the appropriate

cells containing the edge as arguments, even if the octree contains differently sized leaf nodes. It

checks to see if the edge exhibits a sign change, and if so, creates a polygon (two triangles) with

the four relevant points, reordering them if necessary for consistency. The triangles get added

to a list of triangles that is being passed around as an argument. The vertices are referred to by

25

their index in a list of vertices, so vertices only get added to the datastructure once, even if they

are involved in multiple triangles. The index of each vertex in the final datastructure is already

known because, before the contouring begins, there is a procedure call which iterates over the

tree recursively, adding each leaf’s vertex position to a list of vertices, and saving the index of

the vertex in that list into the leaf node itself, so that triangles can be created by arranging

indices.

4.5 Transferring data to GPU

Once a list of vertices and a list of triangles have been produced, the data can be sent to the

graphics card and there is no need to keep a copy of it in the main memory, as the OpenGL

implementation will now manage the data and store it on the main memory if the GPU memory

becomes full.

4.6 Mesh Shading

The system as described above can draw a wireframe outline of the mesh, or a plain colour

version. The mesh needs to be shaded, taking into account the lighting, in order to achieve a

realistic look.

Modern OpenGL requires that the developer program each stage in the “graphics pipeline”

using shaders. The pipeline roughly works as follows. Data is supplied in the form of vertex

buffers. For each vertex, an invocation of the vertex shader is used to compute a transformed

position, and optionally perform arbitrary data-parallel computation on other per-vertex data,

such as vertex colours, texture coordinates, ambient occlusion or lighting. The vertices are then

connected into triangles according to the indices provided in the index buffer. The triangles

are rasterized and a fragment shader is invoked once per “fragment” that may appear in the

final image. A fragment usually corresponds to a pixel, and can be thought of as such by

the developer. The vertex shader outputs are automatically interpolated over the triangle and

passed to the fragment shader as input. Lighting calculations can be performed in the vertex

shader on a per-vertex basis, or in the fragment shader on a per-pixel basis. The lighting quality

is far superior if it is performed separately for each pixel in the fragment shader, rather than

interpolating it from the vertex shader.

As described in section 3.3, to compute Phong lighting in the fragment shader, Lm, N , and

V must be computed at each fragment. The vertex shader transforms the positions of vertices

into screen-space through a series of matrix transformations, and this is the position information

that the fragment shader receives by default. In order to access the world-space position in the

fragment shader, the vertex shader additionally passes the world-space position of each vertex

as an output. The fragment shader then receives the interpolated world-space position. Note

that this is slightly different from the corresponding position of the actual isosurface, but is

much cheaper than computing the interpolation that follows the isosurface, and shouldn’t affect

the resulting image much.

With the light and camera positions passed in as uniforms, it is then straightforward to

compute Lm and V . The computation of the normal is the main advantage of defining the

26

scalar field in GLSL. Given a point, an approximation to the normal can be calculated using

the scalar field.

The mesh looks quite good with shading. A big problem is that there are light patches in

regions of the surface that should be dark, because part of the mesh faces the light and is thus

being shaded light, even though there is part of the asteroid between it and the light, which

should be casting shadow. This is especially noticeable on the dark side of a rough sphere,

where light patches should obviously not be present.

4.7 Shadows

The solution is to include shadows in the lighting calculations. It is required to compute whether

the mesh occludes a given fragment’s lighting. There are several different methods for computing

shadows that are frequently used in graphics applications today.

The system implements a popular, straightforward method called shadow mapping [Williams

1978]. The idea is to render the scene from the light’s point of view, and store the depth buffer

into a texture. By transforming a point into light-space and querying this texture, we obtain

the distance from the light to the nearest point on the mesh to the light in that direction.

By comparing this distance to the distance from the given point to the light, we can compute

whether the point is in shadow or not.

The first step is to create the shadowmap texture by rendering the scene from the point of

view of the light. A matrix is created to transform points into light-space, using an orthographic

projection because in this scene, the light rays coming from the source are modelled as parallel.

A trivial shader is used which only performs the basic transformation using the matrix, and a

new texture is bound to the depth buffer so that depth information is written into the texture.

When computing lighting in the fragment shader, a comparison can now be done between the

distance between the light and a point, and the distance between the light and the nearest point

in that direction. Given a point, projecting it into light space and taking the x,y components

results in the coordinates which need to be used to query the shadow map texture. Conveniently,

the z component is the depth of the given point. If this value is greater than the result stored

in the texture, then the fragment is in shadow and the diffuse and specular lighting components

can be ignored. Theoretically, the value should be at least equal to the result stored in the

texture, being equal when the fragment is not in shadow. In practice, there are rounding and

precision errors.

Quantisation and finite precision result in artefacts in the lit area of the mesh called “shadow

acne”. This can be fixed by introducing a bias, which increases the minimum distance to the

light required to be considered shadow by a fixed small amount, which can be varied to achieve

the desired visual quality. Unfortunately, this bias shifts the line between shadow and lit area,

an effect known as “peter panning”. It becomes clear that softer shadows are required, in order

to more realistically reflect the real world. One solution to mitigate the artefacts and produce

nicer soft shadows is percentage closer filtering, or PCF [Reeves et al. 1987]. This works by

averaging several samples around the point of interest, softening borders between light and

dark. With PCF, the system is able to reproduce realistic, soft shadows, without noticeable

27

artefacts.

4.8 Background

Procedurally defining a background entails writing a function which computes the colour that

should be displayed when looking in a particular direction. An easy way to represent the

direction is simply a direction vector from the camera. Before drawing anything, a unit cube

can be drawn around the camera, with the 6 faces of the cube covering every possible direction.

If this cube is drawn without writing depth information to the depth buffer, then it will appear

behind any other geometry, and can be shaded by a fragment shader which receives the world-

space coordinates of the point on the cube as input, which is also the direction vector from the

camera. In other words, the fragment shader procedurally defines a background. This approach

would involve computing the background for every pixel on screen each frame, which would

have a huge effect on performance with a complex, procedural background. A better approach

(for a static background) is to use the fragment shader instead to read from a texture. OpenGL

includes a specific type of texture that can be indexed by a direction vector, called a Cube Map.

The cube map can be written to, once, as a preprocessing step, by the fragment shader that

computes the background. In my system, the cube map is written to by rendering a rectangle

six times, once for each face of the cubemap, with the cubemap attached to a framebuffer object

as the colour attachment.

28

5 Implementation - Planets

The system that renders asteroids does not scale to larger bodies, such as planets, because a

mesh large enough to have sufficient detail to look realistic when viewed from close to the surface

is too large to compute, store and render. When viewed from space, however, it is acceptable

for the mesh to be a reasonable size. This means that a level-of-detail system is required, which

introduces more detail when necessary on a certain part of the mesh as the camera approaches

the planet. There are many ways this could be accomplished. The following sections describe the

implementation that is in use in the planetary system, which works by recursively introducing

new, separate meshes, each produced similarly to the asteroids, as required.

5.1 LOD chunks

The planet is represented by several mesh chunks, rather than a single mesh. The mesh chunks

are organized into an octree structure, so that parts of the planet near the camera can be

made with several small mesh chunks, while parts of the planet that are far from the camera

can be made with fewer, larger mesh chunks. This LOD system is easy to implement in an

adaptive way, by replacing a mesh chunk with eight smaller mesh chunks when the camera is

within a certain threshold distance, and replacing them with the single larger chunk when the

camera retreats. Each mesh chunk creates its own mesh using Dual Contouring on its own

scalar field data. By offsetting the chunk-space position appropriately when calling the scalar

field function, the meshes will represent parts of the same shape and combine together correctly.

For simplicity, in this implementation, each mesh chunk’s mesh is created from the same sized

cube of voxels, and each layer of the octree of mesh chunks is scaled to be smaller by a factor

of two on each dimension.

5.2 Seams

When multiple meshes are created with Dual Contouring, with their scalar field evaluations

scaled appropriately such that they represent neighbouring parts of the same shape, are placed

next to each other as described above, the resulting meshes do not meet and connect together.

(Figure 17) This is because no triangles are generated for the bordering voxels, as each run of

Dual Contouring is unaware that the mesh extends further than its set of voxels.

There are two obvious ways to solve this issue. The first and more simplistic approach is

to overlap the meshes, both in the rendering space and in the scalar field space, so that the

bordering voxels are accounted for in both meshes and the meshes meet. This works well for

meshes of the same level of detail, but does not work well when one of the meshes is more

detailed than the other. The extra vertices create cracks between the meshes, or holes in the

surface. This motivates a more complex and less known solution: an extra seam mesh that sits

between the two meshes and ‘stitches’ them together. (Figure 18)

The seam solution also works for neighbouring meshes with different levels of detail. (Figure

19)

The seam mesh can be created with Dual Contouring in the same way as the main meshes,

29

Figure 17: Neighbouring meshes leave a gap

Figure 18: Neighbouring meshes stitched with seam

30

Figure 19: Seam for two meshes of different level of detail

using the relevant voxels from the bordering faces of the neighbouring chunks. Thus, it is

required to collate the leaves for the seam based on the level of detail of the neighbours. Given

that traversing the tree is required to get the level of the neighbouring chunks and the scalar

field information necessary to build the leaves, the implementation contains recursive methods

to traverse the tree and add the relevant leaves into a collection upon reaching the appropriate

chunk.

1 const int seamLeavesSubchildren[] = { 0,1,4,5, 0,1,2,3, 0,2,4,6, 2,3,6,7, 4,5,6,7, 1,3,5,7};

2

3 void MeshChunk::collectSeamLeaves(LeafMapCollection* collection, int direction)

4 {

5 if(this->hasChildren)

6 {

7 for (int i = 0; i < 4; i++)

8 {

9 this->children[seamLeavesSubchildren[direction * 4 + i]]

10 ->collectSeamLeaves(collection, direction);

11 }

12 }

13 else

14 {

15 int offset = 6 * direction;

16 glm::ivec3 min = glm::ivec3(collectLeavesRegion[offset + 0], collectLeavesRegion[offset + 1],

17 collectLeavesRegion[offset + 2]);

18 glm::ivec3 max = glm::ivec3(collectLeavesRegion[offset + 3], collectLeavesRegion[offset + 4],

19 collectLeavesRegion[offset + 5]);

20

21 LeafMap* leaves = BuildLeafLayer_search(this->iss, min, max);

22 collection->emplace(this, leaves);

23 }

24 }

Unfortunately, once the leaves have been collected, the values that they contain are in their

origin chunk’s space, which is scaled and translated differently than the destination chunk’s

31

space due to the level of detail system, and the leaf must be transformed to the destination

chunk’s space. The code to perform this transformation, while concise, was not trivial to create,

due to the precise and confusing nature of the transformation. There are three cases, depending

on whether the transformation takes a leaf from a chunk of smaller, equal or higher level of

detail.

1 /*

2 * Takes a leaf, the source and destination chunks, and a logsize_increase. Computes the new min corner taking

3 these into account.

4 * The only side effect is that leaf->minCorner is modified.

5 */

6 void TransformLeaf_MinCorner(DC_Octree* leaf, MeshChunk* source, MeshChunk* destination, int logsize_increase)

7 {

8 leaf->minCorner *= 1 << logsize_increase;

9 int level_difference = source->getLevel() - destination->getLevel();

10 /* source bigger than destination */

11 if (level_difference > 0)

12 {

13 glm::ivec3 temp = leaf->minCorner;

14 /* dimensions of target block */

15 int s = 64 * (1 << logsize_increase);

16 /* decrease factor */

17 int ldiff = 1 << level_difference;

18 /* addr of translated block */

19 glm::ivec3 trans_addr = destination->getAddr() / ldiff;

20 /* pos relative to trans block */

21 glm::ivec3 trans_minCorner = leaf->minCorner + s * (source->getAddr() - trans_addr);

22 /* addr of target within translated block */

23 glm::ivec3 off_addr = destination->getAddr() - trans_addr * ldiff;

24 /* pos of offset block */

25 glm::ivec3 off_pos = s * (off_addr - (ldiff / 2)) + (s / 2);

26

27 leaf->minCorner = trans_minCorner * ldiff - off_pos;

28 }

29 /* source same size as destination */

30 else if (level_difference == 0)

31 {

32 int s = 64 * (1 << logsize_increase);

33 glm::ivec3 temp = leaf->minCorner;

34 leaf->minCorner = s * (source->getAddr() - destination->getAddr()) + leaf->minCorner;

35 }

36 /* source smaller than destination */

37 else

38 {

39 /* dimensions of target block */

40 int s = 64 * (1 << logsize_increase);

41 /* increase factor */

42 int ldiff = 1 << -level_difference;

43 /* addr of bigger block before translation and offset within that block */

44 glm::ivec3 adj_addr = source->getAddr() / ldiff;

45 glm::ivec3 off_addr = source->getAddr() - adj_addr * ldiff;

46 /* pos of offset block */

47 glm::ivec3 off_pos = (s/ldiff) * (off_addr - (ldiff / 2)) + (s/(2*ldiff));

48 //equivalent: glm::ivec3 off_pos = ((s * (off_addr - (ldiff / 2))) + s / 2) / ldiff;

49 /* adjusted position */

50 glm::ivec3 adj_pos = leaf->minCorner / ldiff + off_pos;

51 glm::ivec3 temp = leaf->minCorner;

52 leaf->minCorner = adj_pos + s * (adj_addr - destination->getAddr());

53 }

32

54 }

The last change that needs to be made in order for seams to work is that the seam needs to

be updated whenever any of the chunks it stitches together is subdivided into a more detailed

version. This can be implemented with a straightforward listener and notifier model, and the

result is a large, adaptive, correctly stitched octree of meshes, as pictured below.

Figure 20: Huge meshes can be made of patches

33

Figure 21: Seams working between patches of several different LODs

34

6 Performance Results

The following data (Figure 22) is a performance comparison between three different versions of

the Dual Contouring implementation, as applied to the generation of asteroids.

For this test, a fixed sample of the same 98 asteroids was generated using each of the different

implementations. Time_Octree is the time taken to build the octree, while Time_Mesh is the

time taken to contour the octree into a mesh, corresponding to the two main stages in the Dual

Contouring implementation as described in section 4.2.

The first version is a reference implementation from [Nicholas Gildea 2015], and is based on

the reference implementation code provided by [T. Ju et al. 2002]. The second version is an

initial, näıve implementation that I wrote for this project.

Version Time_Octree (avg) Time_Mesh (avg)

Reference 127ms 0.316ms

Naive 101ms 0.307ms

Search 81.3ms 0.278ms

Figure 22: Performance table

It is immediately clear that a lot more time is spent building the octree than contouring the

mesh. Further inspection reveals that the majority of the time is spent building leaves. For

this reason, the next version implements an optimisation for building the leaves, attempting to

reduce the number of leaves by exploring the space of potential leaves using a tree search on the

neighbours of leaves that have already been built, as explained in the implementation chapter.

The full benefit of the search version is not conveyed by simply comparing averages. In the

worst case scenario, when there are no leaves to be built, the search version performs worse

than the näıve version, which makes the average time much worse. However, for any case other

than this, the search version is significantly faster. Consider the following graphs, which plot

Time_Octree against the size of the resulting mesh for each asteroid in the sample.

The performance characteristic of the reference implementation is a simple, linear relation-

ship, with the smallest meshes taking around 110ms and the largest taking around 150ms (Figure

23).

The same linear relationship is seen in the näıve implementation, but slightly faster, starting

around 80ms and the largest taking around 130ms (Figure 24).

However, while the search implementation performs poorly on empty meshes, taking around

100ms, non-trivial meshes perform much faster, in a linear relationship starting around 50ms

up to the largest taking around 100ms (Figure 25). Unless further assumptions are to be made

about the shape of the isosurface, there is no way to avoid checking every point on the grid

when running Dual Contouring to create a mesh that will ultimately be empty.

35

Figure 23: Reference performance

36

Figure 24: Naive performance

Figure 25: Search performance

37

7 Discussion

The system is a successful implementation of the design described in the design chapter.

The design decision to implement Dual Contouring resulted in great learning opportunity and

the chance to explore the feasibility of using Dual Contouring in a realtime environment, such

as a video game. As expected, though the results are visually impressive, there is a significant

performance hit when increasing the level of detail of a chunk. Marching Cubes might be more

suitable for a video game, because it would be faster and would lend itself much more readily to

the data parallel nature of the GPU, avoiding the latency in moving data back and forth from

main memory, and the trade-off of less accurate shape reproduction is not a big issue in such

an application.

7.1 Areas of interest

Level of detail scaling The system works well for every viewpoint from space to ground,

increasing detail as required to maintain visual fidelity. Despite the difficulty in imple-

mentation, the seams between different chunks work perfectly. LOD transitions are a bit

slow, but it has not been possible within the scope of this project to optimize these yet.

It may be possible to mitigate the impact using multitasking as suggested below.

Aesthetics Visually, the renderer has been a success, rendering beautiful images with great

detail, creating a convincing rocky look without stored textures or meshes, and asteroids

are shaded with soft shadows.

Simplicity The asteroids and planets that the renderer produces are extremely easy to config-

ure, and are described very succinctly in GLSL. The use of Dual Contouring affords great

flexibility, allowing any shape to be described and reproduced faithfully, including sharp

corners, flat surfaces, and interesting topologies. It is easy to create a new type of asteroid

or planet and define a new style, without even having to recompile the code.

7.2 Improvements - fixing problems

• A major weakness of the implementation is that the GPU stops processing the rendering

pipeline while the compute shader that evaluates the scalar field is running. Thus, in-

creasing the level of detail causes the renderer to stutter. This could be solved by using

some form of GPU multitasking, allowing the compute shader to run in parallel with the

rendering pipeline. One way to achieve this would be to use a more modern graphics API,

such as Vulkan or DX12, which allow multiple “streams” of computation to run in parallel.

• The outer layers of the planet could be approximated by a simple approach based on

quadtrees and heightmaps, as the interesting topology wasn’t taken advantage of until the

deepest layers. This could be used to speed up the generation of the outer layers, though

seams between heightmap layers and isosurface layers would be difficult.

• The indexing system for leaves of octrees in the planet implementation is very complicated

and contrived, and it was extremely difficult to write code to produce the seams between

38

chunks correctly. This was the result of designing the system with asteroids in mind

and then extending it to planets afterward. A better solution would be to use a global

indexing system for all leaves, regardless of the chunk that contains them. If uint64_t

integers (unsigned 64 bit integers) were used for each coordinate of a global coordinate

system, then there would be enough space for 58 layers of chunks of size 64x64x64, which

is more than enough for any reasonable implementation, and would avoid the error-prone

code to translate coordinates from one chunk’s space to another.

7.3 Improvements - suggested future work

• The visual quality of the renderer could be improved by introducing a model of the atmo-

sphere around a planet, computing lighting effects like atmospheric scattering, such as the

one described in “A practical model for daylight” [Preetham et al. 1999].

• Instead of light coming from a predefined, fixed angle, a star could be drawn and emit light

for the scene. Post processing effects like HDR and bloom would result in more convincing

solar visuals. Volumetric rendering could be used to simulate the effect of solar rays on

dust clouds in interplanetary space, creating a more realistic feel to the scene. Similarly,

a more advanced shadowing model could be used, such as PCSS [Fernando 2005].

• Scaling the system further to render bigger planets may result in floating point precision

issues, because single precision floating point values were used in the vertex buffers and

in the evaluation of the scalar fields. The effect of this is mitigated in the existing system

because the single precision vertices are in chunk space, and the chunk positions are double

precision. Unfortunately, this doesn’t completely avoid precision issues, because an entire

planet is just one chunk while the camera is far away. Simply switching to double precision

is not a good solution, because typical consumer GPU double precision performance is far

slower than single precision.

• The entire Dual Contouring pipeline could be moved to GPU only [Chen et al. 2015,

Buatois et al. 2006, Goradia 2008].

7.4 Conclusion

In conclusion, approaches to planet rendering based on isosurface extraction techniques are

certainly feasible, especially as the computational power of consumer GPUs grows. With careful

optimisation of the process of increasing LOD, smooth, realtime performance could be attained,

allowing games and other applications to make use of this incredibly powerful and general

approach to defining shapes.

39

References

[1] L. Buatois, G. Caumon, and B. Lévy. Gpu accelerated isosurface extraction on tetrahedral grids.

Advances in Visual Computing :383–392, 2006.

[2] A. Chalmers and A. Ferko. Levels of realism: from virtual reality to real virtuality. Proceedings of

the 24th Spring Conference on Computer Graphics:19–25, 2008.

[3] J. Chen, X. Jin, and Z. Deng. Gpu-based polygonization and optimization for implicit surfaces.

The Visual Computer, 31(2):119–130, 2015.

[4] E. V. Chernyaev. Marching cubes 33: construction of topologically correct isosurfaces. Institute for

High Energy Physics, Moscow, Russia, Report CN/95-17, 42, 1995.

[5] Crytivo Games. Universim. 2017. url: https://theuniversim.com/.

[6] R. Fernando. Percentage-closer soft shadows. ACM SIGGRAPH 2005 Sketches:35, 2005.

[7] S. F. Gibson. Constrained elastic surface nets: generating smooth surfaces from binary segmented

data. International Conference on Medical Image Computing and Computer-Assisted Interven-

tion:888–898, 1998.

[8] R. Goradia. Gpu-based adaptive octree construction algorithms. 2008. url: https://www.cse.

iitb.ac.in/~rhushabh/publications/octree.

[9] S. Gustavson. Simplex noise demystified. Linköping University, 2005.

[10] Hello Games. No man’s sky. 2016. url: https://www.nomanssky.com/.

[11] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of hermite data. ACM Transactions

on Graphics (TOG), 21(3):339–346, 2002.

[12] W. E. Lorensen and H. E. Cline. Marching cubes: a high resolution 3d surface construction algo-

rithm. ACM siggraph computer graphics, 21(4):163–169, 1987.

[13] Nicholas Gildea. Dual contouring sample. 2015. url: https://github.com/nickgildea/.

[14] J. Parnell. Limit theory. 2012. url: http://ltheory.com/.

[15] K. Perlin. An image synthesizer. ACM Siggraph Computer Graphics, 19(3):287–296, 1985.

[16] K. Perlin. Improving noise. ACM Transactions on Graphics (TOG), 21(3):681–682, 2002.

[17] B. T. Phong. Illumination for computer generated pictures. Communications of the ACM, 18(6):311–

317, 1975.

[18] A. J. Preetham, P. Shirley, and B. Smits. A practical analytic model for daylight. Proceedings of

the 26th annual conference on Computer graphics and interactive techniques:91–100, 1999.

[19] S. Raman and R. Wenger. Quality isosurface mesh generation using an extended marching cubes

lookup table. Computer Graphics Forum, 27(3):791–798, 2008.

[20] W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering antialiased shadows with depth maps.

ACM Siggraph Computer Graphics, 21(4):283–291, 1987.

[21] S. Schaefer, T. Ju, and J. Warren. Manifold dual contouring. IEEE Transactions on Visualization

and Computer Graphics, 13(3):610–619, 2007.

[22] S. Schaefer and J. Warren. Dual contouring: the secret sauce. Department of Computer Science

Technical Report, 2(408), 2002.

40

[23] S. Schaefer and J. Warren. Dual marching cubes: primal contouring of dual grids. In Computer

Graphics and Applications, 2004. PG 2004. Proceedings. 12th Pacific Conference on, pages 70–76.

IEEE, 2004.

[24] E. Smistad, A. C. Elster, and F. Lindseth. Fast surface extraction and visualization of medical im-

ages using opencl and gpus. The Joint Workshop on High Performance and Distributed Computing

for Medical Imaging, 2011, 2011.

[25] Squad. Kerbal space program. 2015. url: https://kerbalspaceprogram.com/en/.

[26] L. Williams. Casting curved shadows on curved surfaces. Computer Graphics Lab, 1978.

41

